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1 Nutshell (introductory)

Obligation describing language (and so, I will assume, obligation) is hooked
up with preference, a relation of what-is-better-than-what. But ordinary situ-
ations underdetermine such relations of what-is-better-than-what. Even so,
there are plainly true sentences describing our obligations in those situations.
My argument will be that this mismatch is trouble-making and that getting
out of said trouble requires either giving up the direct link between obligation
and preference or re-thinking the kind of things preferences can be.

2 The target

The problem I want to raise involves obligation describing language that
involves expectation modals: these are modals that give voice to our obliga-
tions subject to what we know.1 Some examples:

* Talks that this paper has become date back a long time: since 2012. Thanks to everyone who
helped me figure out what I was trying to say, in particular Josh Dever, Kai von Fintel, Chris
Barker, Sam Carter, Andy Egan, Ruth Chang, Chris Kennedy, Scott Sturgeon, Peter Ludlow,
Jeff Horty, Kit Fine, Ralph Wedgwood, Shyam Nair, Jan Dowell, Karen Lewis, and audiences
at Northwestern University, LOGOS-Barcelona, USC, University of Chicago (twice, sorry!),
NYU, the University of Arizona (twice, sorry!), the University of Toronto, and the New York
Philosophy of Language Workshop.

1 See von Fintel 2012 for a recent discussion of the classical approach (and its discontents)
to these modals. Two notes before we get going. First: I will focus on ought even though
there is room to wonder whether this is how we express all-in, strong obligation. That is
because ought and should are weak necessity modals and it’s sensible to wonder whether
all-in obligation is weak in that way. (See von Fintel & Iatridou 2008 and the references
therein for more on weak necessity modals.) So, while I will stick with ought, the problem
about preference is about whatever we use to express strong, all-in obligation. So substitute
the strong expectation modal of your dialect as necessary. Second: the problem stands for
deontic oughts of whatever flavor so long as it is tied to a relation of comparative betterness
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(1) a. I ought do the dishes.
(given the house rules plus what we know)

b. Jimbo ought to be in class.
(given the terms of his scholarship plus what we know)

c. Lisa ought to go to the rally.
(given her promises plus what we know)

d. Homer ought to move his car.
(given the laws plus what we know)

We can’t do what we know can’t be.2 We are obligated to do what’s true in the
best of the possibly suboptimal possibilities compatible with what we know.

But there is no best full-stop. There are only bests relative to a given
relation of better than. So ought b in a given situation says that the best
worlds, with respect to the relevant relation of what-is-better-than-what in
that situation and given what we know in it, are b worlds. That gives us a
general template (we’ll use � for the target modal):

Template. �b is true in a situation iff all the best worlds given the normative
constraints plus what we know in that situation are b-worlds.

Our job is to fill this in by saying how the normative constraints give us a
relation of what-is-better-than-what (some kind of preference relation) and
saying how that relation combines with what we know to deliver the set of
best worlds. The problem is that there may be no good way to do that.

3 Preference

The basic observation we will see is this: predicaments can underdetermine
relations of what-is-better-than-what but nevertheless there are determinate

of that same flavor. I try to stay away from examples with full-on moral oughts so that
substantive debates about moral betterness don’t distract from the structural point.

2 Not all occurrences of deontic modals are like that. For instance:

(2) a. Jimbo ought to be in class, but isn’t.

b. Jimbo isn’t in class, but he ought to be.

These describe obligations that Jimbo has irrespective of what we know about his ability to,
going forward, meet them. That’s why they tolerate, but the relevant readings of (1) don’t
tolerate, the negation of their prejacents. These are perfectly good oughts, but not our topic.
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facts about whether an ought is true in such situations. Coping with this
mismatch is the problem. Before getting to all that, I want to have a way of
framing things that is as theory-neutral as possible.

Definition 1 (Preliminaries). Fix a finite set A of atomic sentences.

i. L0
A is the smallest set containing A that is closed under ¬ and ∩.

ii. LA is the smallest set including L0
A and is such that: if a ∈ L0

A then
�a ∈ LA; and if a ∈ LA then ¬a ∈ LA.

iii. w is a possible world iff w ∈ 2A.

For readability I will be willfully sloppy and let a,b, c, . . . range both over
non-modal sentences and the sets of worlds where the sentences in question
are true. Along these lines: I will use ¬ as both a connective (negation)
and its set-theoretic interpretation (complementation) and use ∩ both as
a set-theoretic operation (intersection) and a connective that expresses it
(conjunction).3

Take as basic the concept of a local preference: you have a local prefer-
ence for b given a iff within the a-region of logical space, b is better than
¬b. Write it this way: b ‖a. So b ‖a is a claim in the metalanguage saying
that there is an a-preference for b over ¬b.

An example: an editor asks you to review a paper and you promise to do
it. Suppose this is the only relevant normative constraint in the situation. In
that case: you have a local preference, within the you-promised worlds, for
doing the review rather than not doing it.

Definition 2 (States). A state s = 〈k,p〉 is pair of a finite set k of propositions
and a finite set p of local preferences.

The set k represents what is known in s and p encodes the normative con-
straints.

Definition 3. A set k of propositions is consistent iff ∩k 6= �.

There are some basic formal properties local preferences must have. I will
put these in terms of minimal constraints on the space of consistent states
(and thereby the predicaments they model).

3 Similarly for ∪. When it doesn’t make much difference, let’s also suppress mention of A and
LA even though, officially, everything is parametric on a choice of underlying language.
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Postulate 1. s is consistent iff both k and p are consistent.

So far this only gives a necessary condition for consistency: we know what it
takes for k to be consistent but so far haven’t said what it takes for p to be
consistent. We will come back to this (in Section 6).

Definition 4 (Triviality). A set S of states is trivial iff for every consistent
s = 〈k,p〉 in S and distinct a,b, c at least one of the following holds:

i. if b‖a ∈ p then b‖a∩ c 6∈ p;

ii. if b‖a ∈ p then c‖a 6∈ p;

iii. if b‖a ∈ p then ¬b‖c 6∈ p;

So if the space of states is non-trivial then local preferences can in principle
overlap in both arguments and can conflict and be over-ridden. I will assume
that normative constraints are like that and so the thing we are here taking
them to express (local preferences) are, too.

Postulate 2. The set S of states is non-trivial.

Definition 5 (Support). Let s = 〈k,p〉 be any state. For any descriptive a:

i. s a iff ∩k ⊆ a;

ii. s ¬�a iff s 6 �a.

Support will play the role of truth in what follows. Descriptive sentences are
not bivalent: s can fail to support a and fail to support ¬a. This makes sense
since you and hence your states are in general only partially informed about
the facts. Not so for obligation: given your information and local preferences,
either you are obliged to do a or not. So while this definition doesn’t yet
say what it takes for sentences like �b to be supported or true in a state, it
does put constraints on possible analyses by requiring that they don’t permit
obligation gaps. The analyses we will consider below are ways of filling in the
missing clause in this definition; with them in place we will have candidate
support relations.4

4 When occurs without subscripts, it is either unspecific (what is said goes or ought to go
for any supports relation) or is whichever candidate relation is under discussion; context
should disambiguate.
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Figure 1 Predicament: k (set of propositions) + p (set of local preferences)

Now to the problem. Take the ordinary predicament above: your only
relevant knowledge is that you promised to do the review (a) and the the
only normative constraint is that it is better to do it given your promise
(b ‖a). In a state like this you have chunky preferences: you have definite
attitudes within the a worlds about the desirability of b versus ¬b but you
don’t have any attitudes about an unrelated c given a and you don’t have
attitudes about b simpliciter. The normative constraints are unspecific in
these ways.5 Still, there are oughts that are clearly true.

(3) Better to review (than not), given you promised. b ‖ a
You promised. a
You ought do the review. s �b

Having chunky preferences is a kind of indeterminacy. But the way those
normative constraints pull on us apparently is not thereby indeterminate.

We will look at three ways of dealing with the mismatch between indeter-
minacy of predicaments and the determinacy of what we ought to do in them.
The would-be solutions seamlessly fit into the template by invoking a more
familiar sort of thing: a global preference ordering. This is no accident. Such
relations are well-behaved, well-understood, and seem to be what’s required
to determine what’s best.6

5 There is an analog with credence: what to do if we have imprecise or unspecific information
about whether a (The chance of rain is between 50–70%)? Our credences (some say) should be
similarly mushy (see, for instance, Joyce 2011). As we’ll see the standard way to understand
mushy credences won’t work for chunky preferences. That is somewhat surprising since
generally what goes for credence goes for sufficiently rich preferences and vice versa.

6 These need not (yet) be classical, economist-approved preference relations since we are (for
now) leaving open the possibility that � is not connected: there may be a w and v such that
w 6� v and v 6� w.
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Definition 6 (Global preference ordering). A (weak) preference ordering � is
a reflexive and transitive relation over the set W of worlds; ≺ is the strict
part of �: w ≺ v iff w � v but v 6� w.

The best worlds in a set x with resect to � are those in x that are not
dominated by any others in x.

Definition 7 (Best). Fix a global preference ordering �.

best�(x) = {w ∈ x : there is no v ∈ x s.t. v ≺ w}

Such global orderings (seem to) contain a lot more information about com-
parative goodness than your run of the mill set of local preferences do. Still,
since given such an ordering it is straightforward to find the best worlds in a
set with respect to it, the hope is global preference orders can be leveraged
to represent the information in a set of local preferences, bridging the gap
between local preferences and the oughts that are true based on them.

4 Preference determination

Sets of local preferences are chunky and unspecific and indeterminate in
ways that a global preference ordering isn’t. Perhaps the way to deal with this
indeterminacy is simple: perhaps every set of local preferences, indeterminate
though it may be, nevertheless determines a global ordering in a reasonable
way. The good news here is there is a natural and principled and well-traveled
route to take.

Definition 8. Let b ‖ a be any local preference. A world w flouts b ‖ a iff
w ∈ (a∩¬b). A world w complies with b‖a iff w doesn’t flout b‖a.

The set (a ∩ ¬b) is the flouting proposition for b ‖ a and (¬a ∪ b) is its
complying proposition.

Definition 9 (Induced preference ordering). Let p be a (finite) set of local
preferences. The global preference ordering induced by it is the ordering �p

such that for any w,v :

w �p v iff {b‖a ∈ p : v ∈ (¬a∪ b)} ⊆ {b‖a ∈ p : w ∈ (¬a∪ b)}
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That is: w �p v iff w complies with every local preference in p that v does.
The idea is not new.7 What we have done is to treat local preferences as
the ingredients of premise sets or, as they are now more generally known,
ordering sources for deontic modals.

This naturally pairs with the template.

Analysis 1. Let s = 〈k,p〉 be any state.

s
1
�b iff best�p(∩k) ⊆ b

It is a two step procedure: derive orderings from the set of complying
propositions for p (an ordering source); ought quantifies over the resulting
best worlds compatible with the set of propositions characterizing what is
known (a modal base).8

This solution has a lot going for it. It rightly predicts that oughts can
come and go both depending on what you know and depending on what
the normative constraints are. For instance: suppose you are a committed
promise-keeper but that you haven’t made a promise to go to the pub.9 Then
you are unconstrained: you can do whatever, pubwise.

(4) Better to go to the pub given you promised. b‖a
It’s not the case that you ought go to the pub. s 6 �b

It’s not the case that you ought not go to the pub. s 6 �¬b

Things are different when you (know you) made a promise, though.

(5) Better to go to the pub given you promised. b‖a
You promised to go to the pub. a
You ought go to the pub. s �b

7 Lewis 1981 argued that the difference between premise semantics and ordering semantics for
counterfactuals is exaggerated: every set of premises (propositions) induces an ordering in
this way that is in a precise sense equivalent as far as evaluating counterfactuals is concerned
(see, e.g., Gillies 2017: §4,8).

8 This implements in the current framework the standard-bearer in semantics for all sorts of
modality: see Kratzer 1981, 1991, 2012.

9 Here and in some of the following examples (some of) the local preferences are unconditional:
that is, conditional on >. This is fine: the arguments have to do with the structure of local
preferences and their allegedly induced global orderings and that is somewhat easier to
track when there are only a few propositions in play. If you find things (even) more natural
for constraints that are genuinely conditional, be my guest in crafting examples with three
basic propositions in play instead.
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Figure 2 Promise keeping

Analysis 1 predicts this pattern smoothly. Here’s why (this is all pictured
in Figure 2(a)).10 In the case of (4) the lone local preference induces an
ordering �p that divides the worlds into two clumps: those that verify the
preference (i.e., those in ¬a∪ b) and those that flout it (i.e., those in a∩¬b).
Each clump is an equivalence class with respect to �p and each member of
the first clump is strictly better than any in the second. Since you don’t know
anything relevant (k = �) it follows that best�p(∩k) contains worlds in a∩ b
and worlds in ¬a∩¬b and so s neither forces �b nor �¬b and so instead
supports their negations.

Things are different in (5). Now you know something (a) that interacts
with your constraints. Now, pick any world in a that is not bettered by
some other world in a. (In Figure 2(b): this is {w}.) Is it a b-world? Yes,
it is. Knowing even more could, in principle, remove the obligation: if the
appointed hour comes and goes and you don’t go to the pub, then you will
know ¬b and the best worlds compatible with this will not be b worlds.

The general feature this is an instance of: what’s supported isn’t persistent
in what you know.

10 Conventions for the graphs: w � v iff there is a directed path of length 0 or more from w
to v ; w 6∈ ∩k iff w’s node is grayed out.
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Definition 10 (Persistence). For any s = 〈k,p〉 and s = 〈k,p〉: s′ extends s
(s ≤ s′) iff k ⊆ k′ and p ⊆ p′.

i. A sentence a is persistent in k (alternatively: in p) with respect to

iff s a and s ≤ s′ imply s′ a where p = p′ (alternatively: where
k = k′).

ii. A sentence a is persistent (full-stop) with respect to iff it is persis-
tent in both k and p.

Non-persistence is a kind of nonmonotonicity and both �b and ¬�b exhibit
it: in particular, knowing more can both usher in and sweep out obligations.

Proposition 1. �b and ¬�b are non-persistent in k with respect to
1

.

Proof. Non-persistence in k of ¬�b: see examples (4) and (5). (I will put off
discussing non-persistence in k of �b until Section 5).

Obligations are likewise non-persistent in local preferences. An example:
suppose the only normative constraint is that you (unconditionally) prefer
becoming mayor to not and the only relevant information is that going to the
pub is a necessary condition for becoming mayor. Well, then, you ought to
go to the pub.

(6) Better to become mayor than not. a‖>
Either you don’t become mayor or you go to the pub. ¬a∪ b
You ought to go to the pub. s �b

Suppose instead that you face the additional constraint: you (unconditionally)
prefer to not go to the pub.11

(7) Better to become mayor than not. a‖>
Better to not go to the pub than to go. ¬b‖>
Either you don’t become mayor or you go to the pub. ¬a∪ b
It’s not the case that you ought to go to the pub. s′ 6 �b

It’s not the case that you ought to not go to the pub. s′ 6 �¬b

11 The example (from Kratzer 1981) is an instance of what is called the “Nixon diamond” in
nonmonotonic/default logic circles. Suppose your information is that Quakers are (normally)
pacifists and that republicans are (normally) not pacifists. If all you know about Nixon is that
he is a republican and a Quaker, then what should you conclude about his being a pacifist?
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Figure 3 Becoming mayor

This is too bad for you: your local preferences compete and pull you in
opposite directions. As a result you don’t have the obligation to go to the
pub and you don’t have the obligation to not go to the pub. Though you
ought to do one or the other.12

Again, Analysis 1 predicts this pattern smoothly. When the only local
preference is a‖> then as far as �p is concerned there are the complying
worlds and the flouting worlds, where the compliers are each as good as each
other and strictly better than each flouter and each flouter is equally good
(or bad, as it happens) as each other. In the ordering in Figure 3(a), u is the
only world ruled out by k. There is a path from w to v but not vice versa, so

bestp(∩k) = {w} and so s
1
�b.

When you instead have the local preferences p′ = {a‖>,¬b‖>}, worlds
that were previously tied with respect to �p no longer are (the ordering in
Figure 3(b)): u complies with both local preferences, w and v comply with
one each, and z flouts both. Now w and v are incomparable: there is no
path from w to v any more. But your information hasn’t changed: becoming
mayor still requires, as a matter of brute fact, that you go to the pub. That
rules out u (and nothing else). Hence the best worlds compatible with k

12 Thus when it comes to (potential) moral conflicts, the account is an implementation of what
Horty (2012) calls the “disjunctive account”. See also Gillies 2014, Horty 2014.
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Figure 4 Specificity

according to �p are w and v . Since one is a b-world and one a ¬b-world it

follows that s′ 6
1
�b and s′ 6

1
�¬b.

The general pattern:

Proposition 2. �b and ¬�b are non-persistent in p with respect to
1

.

Proof. See examples (6) and (7).

Knowing more can add to and reduce your obligations and so can becoming
acquainted with new normative constraints. Analysis 1 gets this right.

5 Preference (un)faithfulness

As tidy as this all seems, I don’t think taking local preferences to determine
global preference orderings in this way is right and therefore a candidate
solution like Analysis 1 is not right.

The mechanism that induces the orderings enforces categorical priorities.
Each world’s relative position in the induced global preference ordering is
determined by comparing which categorical priorities each complies with.
This way of adjudicating trade-offs between local preferences overgenerates
incomparabilities between worlds.

Predictably, this has empirical consequences. An example:
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(8) Better to go to the pub than not. b‖>
Better to not go to the pub given it’s Sunday. ¬b‖a
It is Sunday. a
You ought not go to the pub. s �¬b

The judgment that you ought not go to the pub is not shared by Analysis
1. It agrees that it is not the case that you ought to go (this is the promised
non-persistence in k of �b from Proposition 1), but it stops short of saying
that you ought to not go.

The official and slightly more general form of the problem:

Proposition 3. s 6
1
�¬b where k = {a, c} and p = {b‖a,¬b‖a∩ c}.

Proof. Figure 4(a) contains a simple model of (8). Here u is the only world
complying with both local preferences, w and v each comply with one but
not the other, and z flouts them both. So w and v are incomparable in the
induced �p. Since a = {w,v}, both are in best�p(∩k). Butw ∈ ¬b and v ∈ b
and so both s 6

1
�b and s 6

1
�¬b.

This doesn’t square with the judgment that �¬b is true in (8). The local
preference to stay away from the pub on Sundays should over-ride the local
preference for pub going; instead we get an incomparability between worlds
complying with one and not the other of the local preferences.13

A possible patch: anytime p contains a local preference like b ‖a and
one like ¬b‖a∩ c with a strictly stronger triggering condition, the induced
ordering should only pay attention to the more specific ¬b‖a∩ c. Since >
is weaker than a, in modeling (8) we should look at p′ = {¬b‖a}. A model
using the coarser �p′ is in Figure 4(b). It is true that best�p′ (∩k) = {w} and
so this patch may seem to do the job.

But, no. First, it is plainly ad hoc. The patch requires that we, qua theo-
rists, are doing all the weighing and adjudicating between local preferences.
This is work that the mechanism of inducing an ordering was supposed to do.
Second, there is no simple a priori story for what counts as “more specific”:
it can depend on what you know not just on what local preferences you have.

To see this, consider a somewhat richer state where k = {a,a ⊆ c} and
p = {b‖a,¬b‖c}. For concreteness suppose you face the constraint that it
is better to go to the pub given that Alex goes and you know it is a brute fact

13 The incomparability in �p is not the problem: insisting instead on indifference between w
and v (by appeal to some as yet specified departure from Definition 9) doesn’t help.
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that Chris will be at the pub only if Alex is and that Chris will be there. Add
to this the constraint that it is better to not go given that Chris will be there.
Given what you know, this is a more specific, over-riding consideration.

(9) Better to go to the pub given Alex is going. b‖a
Better to not go to the pub given Chris is going. ¬b‖c
Chris goes. c
Either Chris doesn’t go or Alex goes. ¬c ∪ a
You ought not go to the pub. s �¬b

This is not a case of conflict: you should not go to the pub. But neither local
preference has a triggering condition that is asymmetrically stronger than the
other’s. Figure 4(a) can be interpreted as a partial representation of a model
of this state using the induced preference ordering �p: pictured are just the
c-worlds. Here, as in the original model of (8), w and v are incomparable but
are both in best�p(∩k) and so ought quantifies over both and that clashes
with the judgment that �¬b is supported. Since what is more specific isn’t
merely a matter of what local preferences you have, the patch doesn’t work.

The mechanism for inducing global preference orderings lumps speci-
ficity situations like (8) together with situations like (7) that have genuinely
competing local preferences. The lumping is wrong, but the reason why
it so lumps is more wrong.14 To get at that, we’ll be concerned with strict
preference relations.

Definition 11. A strict global preference relation ≺ is a transitive relation
on W such that for any w,v exactly of one of the following holds: w ≺ v ,
w = v , or v ≺ w.

These are economist-approved strict preference relations.15

Definition 12 (Linearizations). Let � be any global preference order (reflexive
and transitive relation over W ). A strict preference ≺′ linearizes � iff:

14 The problem is not unique to Analysis 1. The problem lies with the way Lewisian mechanism
for inducing global orderings from sets of propositions and therefore is inherited by refine-
ments of that method. For instance, the mechanism in Cariani et al. 2013 is meant to deliver
different global orderings depending on what information is present in a predicament. It
does, but under the natural partition of actions in (8) it, too, delivers incomparability between
the best (given what you know) pub-going worlds and pub-avoiding worlds.

15 The second condition in the definition is sometimes called “trichotomy”. Given such a ≺,
define its weak counterpart as follows: for any w and v , w � v iff w ≺ v or w = v . The
resulting relation is a weak total ordering of W .

13



i. if w ≺ v then w ≺′ v ; and

ii. if w 6≺ v and v 6≺ w then either w ≺′ v or v ≺′ w.

If ≺′ linearizes � it is a linearization of �.

In general an induced �p has a bunch of linearizations: one for each way of
settling each tie or incomparability in �p.16

Proposition 4. Fix a set p of local preferences and its induced global ordering
�p. Let ≺1, . . . ,≺n be the linearizations of �p. Then for any set x:

best�p(x) =
n⋃
i=1

best≺i(x)

Proof. Consider any w ∈ best�p(x) and any v ∈ x where w 6= v . It follows
that v 6�p w. Hence there is a linearization ≺i of �p such that w ≺i v and
hence v 6≺i w. The choice of v was arbitrary so for no v ∈ x is it the case
that w 6= v and v ≺i w. Hence w ∈ best≺i(x) and so w ∈

⋃n
i=1 best≺i(x).

Going the other direction, consider any w 6∈ best�p(x). We may further
assume that w ∈ x (otherwise it follows trivially that w 6∈

⋃n
i=1 best≺i(x)).

Since w ∈ x but w 6∈ best�p(x) there is a v ∈ x such that v ≺p w. But since
each ≺i linearizes �p it follows that v ≺i w for each i. Hence for no i is it
the case that w ∈ best≺i(x) and so w 6∈

⋃n
i=1 best≺i(x).

We therefore lose nothing by talking about a set of linearizations of �p

rather than the induced �p itself. As far as Analysis 1 is concerned it doesn’t
matter which.

So, in (8), we know that s 6
1
�¬b. Thinking in terms of the linearizations

of �p: this is because there is a linearizing ≺ according which the best worlds
in a are in b but also a linearizing ≺′ according which the best worlds in a
are in ¬b (Figure 5). It is not merely that some linearizations go beyond the
normative information in p. Some of them are in a precise sense unfaithful
to it. To say just what that amounts to, first lift the strict global ranking ≺
on worlds to one on propositions.

16 This idea, too, has roots in conditionals: in particular, in Lewis’s (1981) argument showing
that there isn’t much disagreement between versions of ordering semantics that allow ties
and incomparabilities (Pollock 1976) and those that allow ties but no incomparabilities
(Lewis 1973) and those that allow neither (Stalnaker 1968, Stalnaker & Thomason 1970).
Linearizations also play a role in partial-order planning (see, for instance, Pollock 1998). Note
that applying best≺(·) where ≺ is a strict global preference will always return a singleton.
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Figure 5 Two linearizations of �p

Definition 13 (Lifted preferences). For any strict preference ordering ≺ on W
it’s propositional lift �+ on ℘(W) is the relation:

a �+ b iff for any w: if w ∈ b \ a then v ≺ w for some v ∈ a

The strict part of �: a ≺+ b iff a �+ b and b 6�+ a.

So a is better than b just when every b ∩¬a world is dominated by some a
world or other and not vice versa. Note that �+ is an economist-approved,
weak preference ordering over propositions: it is transitive and connected.17

Definition 14 (Faithfulness). A strict global preference ordering ≺ is faithful
to b‖a iff a∩ b ≺ a \ b; it is faithful to a set p of local preferences iff it is
faithful to each b‖a ∈ p.

Being faithful to b ‖a means ranking the confirming proposition as better
than the flouting proposition. This is different from the induced ordering
mechanism.

Proposition 5. A strict global preference ordering ≺ is faithful to b ‖a iff
best≺(a) ⊆ b.

17 Since it is generally clear from context whether ≺ or ≺+ is in play, from now on I’ll omit the
superscript.
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Proof. Assume ≺ is faithful to b ‖ a. Suppose for reductio that there is
some w ∈ best≺(a) such that w 6∈ b. Since ≺ is faithful to b ‖a it follows
that a ∩ b ≺ a \ b. Hence there is a v ∈ a ∩ b such that v ≺ w and so
w 6∈ best≺(a). Contradiction.

Now consider any w ∈ a \ b. We have to show that there is a v ∈ (a∩ b)
such that v ≺ w. Consider v ∈ best≺(a): since w ∈ a it follows that w 6≺ v
and hence v ≺ w and so a ∩ b � a ∩ ¬b. To see that a ∩ ¬b 6� a ∩ b:
suppose otherwise. Note that since v ∈ best≺(a) and hence that v ∈ a∩ b
there would have to be a u ∈ a such that u ≺ v , contradicting the fact that
v ∈ best≺(a). Hence a∩ b ≺ a∩¬b and so ≺ is faithful to b‖a.

The issue with induced preference orderings is that they can have lin-
earizations which are not faithful to the set of local preferences that induce
them. And so our obligation describing language can end up appealing to
global orderings that, intuitively, it shouldn’t. That is the case in predica-
ments like (8) where one local preference intuitively over-rides a more specific
one. Officially:

Proposition 6. Let p = {b‖>,¬b‖a}. There is a linearization of �p that is
unfaithful to p.

Proof. See example (8) and Figure 5.

Using induced global preference orderings gets things wrong in two ways.
First: the induced orderings carry more information than the thing they are
modeling. In the same way that a single probability function isn’t cut out to
model an agent with mushy credences, a single global preference ordering
isn’t cut out to model an agent with chunky preferences. Trying to force
them to do this job forces them to do it in a way that is unfaithful to the
local preferences. Second: the induced orderings carry less information
than the thing they are modeling. The induced orderings lump together
situations in which a more specific local preference trumps a less specific one
with situations in which local preferences genuinely compete. The empirical
upshot is undergenerating obligations in those cases.

6 Constraining preferences

Having chunky preferences is a kind of indeterminacy. Analysis 1 goes
wrong by insisting that, appearances to the contrary, chunky preferences
do not underdetermine proper global counterparts. The way it does this
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ends up treating as relevant global orderings that are unfaithful to the
constraints in predicaments. This is not how to deal with indeterminacy.
Perhaps, instead, we should cope with it the way we cope with other forms
of indeterminacy: what you ought to do is not what is best with respect to
the relevant global preference ordering but what is best with respect to all
relevant such relations. What counts as relevant? Faithfulness.18

Analysis 2. Let s = 〈k,p〉 be any state.

s
2
�b iff best≺(∩k) ⊆ b

for every ≺ faithful to p.

Analysis 1 and Analysis 2 share a commitment to representing local prefer-
ences by appeal to global surrogates. But they otherwise differ in worldview:

2
treats predicaments as constraining (and not in general determining) the

global orderings relevant for oughts.
This gets a lot right. It embraces the idea that local preferences underde-

termine a proper global preference relation. But it copes with it gracefully,
agreeing with a lot of the verdicts that Analysis 1 gets right.

Take, for starters, the predicament in (5): you have the local preference
to go to the pub given that you promised (b ‖a) and the information that
you promised (a). Both Analysis 1 and Analysis 2 agree: you ought to go to
the pub. Here’s why. Consider any ≺ faithful to p. Then best≺(a) ⊆ b. Since

k = {a} and ≺ was arbitrary it follows straight away that s
2
�b.

Or take a predicament with conflict between local preferences like (7).
Here, too, the two analyses agree on the bottom line: it’s not the case you
ought to go to the pub and it’s not the case that you ought not to go to the
pub. But the way we get to this conclusion by Analysis 2 is different.

To see this, consider any ≺ faithful to p = {a‖>,¬b‖>}. Every such
ordering treats a∩¬b worlds as best simpliciter. Some of those orderings
rank a∩ b worlds as next-best simpliciter and some rank ¬a∩¬b as next-
best simpliciter. Figure ?? shows two orderings faithful to p exhibiting both

18 In addition to its conditionals roots, there is also a clear connection from supervaluationism
(Fine 1975). It also looks like the preference-analog of modeling mushy credences with sets
of probability functions: there the suggestion (e.g. in Joyce 2011) is that the epistemic states
of rational agents should be modeled by sets of coherent probability functions and that
such agents should update their credences by conditionalizing on those sets. These family
resemblances make a lot of sense since the idea is that predicaments are shot through with
a specific kind of indeterminacy.
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Figure 6 Faithfulness to �p= {a‖>,¬b‖>}

features where a = {w,u} and b = {w,z}. Both orderings rank a ∩ ¬b
worlds (i.e., u) as best simpliciter, but they differ on whether a∩ b is next-
best or whether ¬a∩¬b is next-best: according to one w ≺ v and according
to the other v ≺ w. This divergence of opinion doesn’t make either of them
unfaithful to p. Now, since in the predicament k = {¬a∪ b}, world u is the
lone possibility ruled-out. Hence for some faithful ≺ we get that best≺(∩k)
includes a b-world (w) and for some faithful ≺ we get that best≺(∩k) includes

a ¬b-world (v). And so s 6
2
�b and s 6

2
�¬b.

So far, so much convergence. A bit more:

Proposition 7. ¬�b is not persistent in either k or p with respect to
2

.

Proof. Non-persistence in k: let s = 〈k,p〉 where k = � and p = {b‖a}.
Among the ≺ faithful to p: there is one in which a∩ b is best full-stop and

one in which ¬a ∩ ¬b is best full-stop. Hence s ¬�b. Now consider
s′ = 〈k′,p′〉 where k′ = {a} and p′ = p. Let ≺ be ay ordering faithful to p′.

Hence: best≺(a) ⊆ b. Since ∩k = a, it follows that s′ �b and so s′ 6 ¬�b.
Non-persistence in p: let s = 〈k,p〉 where k = {a} and p = �. Clearly,

s ¬�b. Now consider s′ = 〈k′,p′〉 where k′ = k and p′ = {b‖a}. Since ≺ is

faithful to p′ it follows that best≺(a) ⊆ b and so since ∩k′ = a that s′ �b

and hence s′ 6 ¬�b.
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This is where agreement ends. Take, for instance, predicaments like (8).
Analysis 1 treats situations like this as cases of competition between local

preferences. As a result, s
1
¬�b (good) but also s 6

1
�¬b (bad). Not so

Analysis 2. The reason is straightforward: if ≺ is faithful to p = {b‖>,¬b‖a}
then best≺(a) ⊆ ¬b. Since k = {a} it follows that s

2
�¬b. The over-riding

local preference, well, over-rides the other one. This is a relevant comparative
good-making feature.

To see that this isn’t a vacuous prediction, we need to see that there is at
least one ≺ faithful to p. (There is.) That leads to the general idea of when a
set of local constraints is consistent.

Definition 15 (Consistency). A set of local preferences p is consistent iff there
is a strict global ordering ≺ that is faithful to it.

This is the ordering analog of satisfiability. Using it we now know what it
takes for a state to be consistent. So p = {a‖>,¬b‖>} is consistent, as we’d
expect and want. Of course, not just anything goes: {b‖a,¬b‖a} isn’t, by
these lights, consistent. This also goes in the pro-column.19

This can be turned into a characterization of what oughts are true in a
predicament.20

Theorem 1. For any consistent state s = 〈k,p〉: s
2
�b iff p∪ {¬b‖∩k} is

inconsistent.

Proof. Suppose (for reductio) that s �b but that p∪{¬b‖∩k} is consistent.
Thus there is a ≺ faithful to p and faithful to ¬b ‖∩k. Hence best≺(∩k) ⊆
¬b. But s �b and so best≺(∩k) ⊆ b and so ∩k = �, contradicting the
assumption that s is consistent.

Now suppose that p∪{¬b‖∩k} is inconsistent. Consider any ≺ faithful to
p. Since p∪ {¬b‖∩k} is inconsistent clearly ≺ can’t be faithful to {¬b‖∩k}.
Hence (∩k ∩ ¬b) 6≺ (∩k ∩ b) and so (∩k ∩ b) ≺ (∩k ∩ ¬b). Hence
best≺(∩k) ⊆ b and so s �b.

19 This is another spot where the difference in between a preference-determination worldview
(Analysis 1) and a preference-constraining worldview (Analysis 2) comes out: inducing
preferences in the usual way always generates an ordering and so that mechanism treats
what’s going on in a set like {b‖a,¬b‖a} as a case of competition. Such sets seem more
broken than that.

20 A probabilistic analog of this in the context of conditionals was first proved by Adams (1975).
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Analysis 2 is therefore in a precise sense exactly what we can get, prediction-
wise, out of a set-up that takes deals with the indeterminacy of chunky
preferences by quantifying over the global preference rankings that are
faithful to them.

7 Merely possible constraints

The reason Analysis 2 smoothly handles predicaments like (8) in which one
local preference over-rides another less specific one is that it uses exactly
the same engine that the analog of the flat (unembedded) fragment of the
basic logic for variably strict conditionals uses.21 Famously, variably strict
conditionals don’t validate antecedent strengthening: given a nearness or
similarity ordering, the nearest a-worlds can be b worlds even though the
nearest (a∩ c)-worlds aren’t. In modeling predicaments using these tools
we inherit this behavior. Therefore, in any global ordering faithful to a set of
normative constraints, just because the best a-worlds are b-worlds it doesn’t
follow that the best (a∩ c)-worlds must be, too. That is good news.

The bad news is that it is precisely this feature that dooms Analysis 2.
Consider a predicament like (8) but in which you know just a little more, (say)
that it is rainy:

(10) Better to go to the pub than not. b‖>
Better to not go to the pub given it’s Sunday. ¬b‖a
It is Sunday. a
It is rainy. c
You ought not go to the pub. s �¬b

The judgment that you should stay away from the pub is not shared by

2
. Here’s why: there are a lot of global orderings. In particular, there are

some faithful to both ¬b‖a and b‖a∩ c. This is the calling card of global
preference orderings. Some of these, in turn, are also faithful to the humble
b ‖>. Let ≺ be one such witness. Now, any ordering like ≺ faithful to all
three of these is also faithful to just p = {b‖>,¬b‖a}, the local preferences

in this predicament. So, when it comes to seeing whether s
2
�¬b it follows

that ≺ is among the orderings consulted. But since k = {a, c} that means

21 See Burgess 1981, Veltman 1985. The flat fragment of the basic conditional logic also
coincides (again, shared engine) with preferential entailment relations for non-monotonic
logics; see Krauss et al. 1990, Makinson 1994.
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Figure 7 Some orderings faithful to p = {b‖>,¬b‖a}

we are concerned with the best (a∩ c)-worlds according to ≺. This ordering
is faithful to b‖a∩ c and so best≺(∩k) ⊆ b. Therefore it can’t be true that
according to all orderings faithful to p the best worlds compatible with k are

¬b-worlds and therefore s 6
2
¬b. This isn’t the right prediction.

A concrete example: Figure 7(a) shows an ordering that is faithful to both
b ‖ > and ¬b ‖ a but not faithful to the strengthened b ‖ a ∩ c: the best
(a ∩ c)-world according to it is x and that is a ¬b-world. So far so good.
However, the global ordering in Figure 7(b) is also faithful to both b‖> and
¬b ‖a. It is, in addition, also faithful to the merely possible b ‖a ∩ c: the
best (a∩ c)-world in this ranking is z and it is very much a b-world. If your
state is like p then Analysis 2 quantifies over both sorts of orderings.

The prediction is bad, but the reason for it is worse. Your obligation to
go to the pub has been over-ridden by the merely possible preference for
avoiding the pub on rainy days together with the actual information that it is
rainy. Rain is not the issue: for any bit of unrelated information you have,
there is the looming specter that it is a priori possible to face a constraint
that says: given that information, better to stay away from the pub.

The general troublemaking feature is that the thing Analysis 2 leverages
to get things right when one local preference seems to over-ride another is
exactly the thing that makes it too hard to have obligations: �b is guaranteed
to be persistent in p.
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Corollary 2. �b is persistent in p with respect to
2

.

Proof. This follows from Theorem 1: consider any (consistent) s = 〈k, s〉 and

s′ = 〈k′, s′〉 where k = k′ and p ⊆ p′. Suppose s
2
�b. Hence p∪ {¬b‖∩k}

is inconsistent. But then so is any set that includes it and hence so is

p′ ∪ {¬b‖∩k}. Thus s′
2
�b.

This certainly seems suboptimal. Is there room for hope, though? So far we
don’t know exactly how easy it is to find merely possible constraints that are
consistent with a given p. Alas, it is all too easy: exactly as easy as it is to
indefinitely extend Sobel sequences. Thus, given Analysis 2, almost nothing
is obligatory.22

In fact, there is a constructive procedure for testing the consistency of
a set of local preferences (we’ll see it in the proof of Theorem 4). This can
be leveraged to finding witnessing faithful global orderings that undermine
almost any would-be obligation.23

Definition 16 (Admissibility). A set p admits b‖a iff there is a w such that:

i. w ∈ a∩ b; and

ii. w complies with every b′‖a′ ∈ p.

The set p is admissible iff there is a b‖a ∈ p that it admits.

The admissibility of p has a simple test, too.

Proposition 8. A set p = {bi‖ai : 1 ≤ i ≤ n} is admissible iff there is a
w ∈ a1 ∪ · · · ∪ an such that w complies with every bi‖ai ∈ p.

22 Like so:

(11) a. If Alex comes, it will be fun;

b. But if Alex and Billy come, it will be no fun;

c. But if Alex and Billy and Chris come, it will be fun;

d. . . .

Lewis (1973) used such sequences to argue that counterfactuals can’t be any sort of strict
conditional. (For dissenting views on that score see von Fintel 2001, Gillies 2007.)

23 The construction was first used (again, in a quantitative setting) by Adams (1975). In the
qualitative setting (well, rank-theoretic setting (Spohn 1988)) the procedure is part of system
z (Pearl 1990); we’ll see just how in Section 8.
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Proof. Suppose p = {bi‖ai : 1 ≤ i ≤ n} is admissible. So for some bi‖ai ∈ p
and some w: w ∈ (ai ∩ bi) (and hence w ∈ a1 ∪ · · · ∪ an) and w complies
with every bj ‖aj ∈ p.

Suppose there is a w ∈ a1 ∪ · · · ∪ an such that w complies with every
bi‖ai ∈ p. Since w complies with every member of p:

w ∈ ((¬a1 ∪ b1)∩ · · · ∩ (¬an ∪ bn))

And since w ∈ a1 ∪ · · · ∪ an it follows that w ∈ ai for some i. So: w ∈ ai
and w ∈ (¬ai∪bi) and so w ∈ ai∩bi for some i. Thus: p admits bi‖ai and
is therefore admissible.

The promised result: p is consistent iff every non-empty subset of p is
admissible. The proofs of the left-to-right and right-to-left directions (this
one has the constructive procedure) are different enough that it makes sense
to split them up.

Theorem 3. If p = {bi‖ai : 1 ≤ i ≤ n} is consistent then p is admissible.

Proof. Suppose (for reductio) that p = {bi‖ai : 1 ≤ i ≤ n} is consistent but
not admissible. Let ≺ be any ordering faithful to p. Let x = a1 ∪ · · · ∪ an.
Since p isn’t admissible, for every w ∈ x there is a bi ‖ai that w flouts. So
take w ∈ best≺(x): w ∈ x and w ≺ v for every v ∈ x such that w 6= v . So
there is a bi‖ai that w flouts: that is, w ∈ ai ∩¬bi (Proposition 8). Since ≺
is faithful to p and hence to bi‖ai it follows that ai ∩ bi ≺ ai ∩¬bi. Hence
there is a v ∈ ai ∩ bi such that v ≺ w. But v ∈ x and so v 6≺ w, completing
the reductio.

Theorem 4. If p = {bi‖ai : 1 ≤ i ≤ n} is admissible then p is consistent.

The proof makes use of two ideas. The first is a constructed ordered
partition π of p and the second is a ranking of worlds that reflects the
priorities encoded in the partition.

Definition 17 (Ranking functions). A function κ is a ranking function iff:

i. κ : W → Z≥0; and

ii. κ−1(0) 6= �.
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By extension: (i) κ(a) = min {κ(w) : w ∈ a}; (ii) κ is faithful to b ‖ a iff
κ(a ∩ b) < κ(a ∩ ¬b) and to a set p iff it is faithful to each member of p;
and (iii) bestκ(a) =

{
w ∈ a : κ(w) ≤ κ(v) for any v ∈ a

}
.24

Proof of Theorem 4. Suppose every non-empty p′ ⊆ p is admissible. Con-
struct a partition π = 〈p0, . . . ,pn〉 of p inductively as follows:

i. p0 = {b‖a : p admits b‖a}

ii. pk+1 =
{
b‖a ∈ p \

⋃k
i=0 pi : p \

⋃k
i=0 pi admits b‖a

}
Define the following ranking function based on π :

κπ(w) =min
{
i : w complies with b‖a for every b‖a ∈ pj, j ≥ i

}
It follows that for any w, κπ(w) = j iff j = i + 1 where i the largest index
of partition cell that contains a local preference in p that w flouts. Finally:
w �π v iff κπ(w) ≤ κπ(v).

To complete the proof we show that for every linearization ≺π of �π
and every i: if b ‖ a ∈ pi then best≺π (a) ⊆ b. So consider any b ‖ a ∈ pi

and suppose for reductio that there is a w ∈ best≺π (a) such that w 6∈ b.
Hence w ∈ a ∩ ¬b and so w flouts b ‖ a and so κπ(w) ≥ i + 1. Now, let
p∗ = p \

⋃i
k=0 pk and note that p∗ admits b ‖ a. So there is a v ∈ a ∩ b

such that v complies with every member of p∗. Hence κπ(v) ≤ i and so
κπ(v) < κπ(w) and so v ≺π w. But since v ∈ a this contradicts the
assumption that w ∈ best≺π (a), completing the proof.

The partition π is key. It sorts local preferences and thereby worlds that
flout them. So, returning to the main issue: say you have the local preference
b‖a. According to Analysis 2, �b can be true only if it’s impossible to pick
up a local preference ¬b ‖a ∩ c for any c that you happen to know. How
widespread is the problem?

Quite: if a ∩ b ∩ c 6= � then p = {b‖a,¬b‖a∩ c} has this ordered
partition: π = 〈p0,p1〉 where p0 = {b‖a} and p1 = {¬b‖a∩ c}. Similarly,
given a consistent p that contains b‖a it is all too easy to find a c such that
p∪ {¬b‖a∩ c} is consistent, too.

Analysis 1 goes wrong by consulting orderings outside those faithful to
a predicament. Analysis 2 gets things right by insisting that only faithful
global orderings count. It also insists that all faithful orderings matter, but

24 As with orderings, so too with ranking functions: κ is faithful to b‖a iff bestκ(a) ⊆ b.
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this turns out to be why the analysis goes wrong. From the perspective of
the template, we are running low on degrees of freedom. This is definitely
suboptimal.25

8 Constraining the constraints

If the problem is that faithfulness allows too many global orderings through
the front door, then perhaps we should constrain things further. This is not
easy. That is because we have been assuming throughout that the set S of
predicaments doesn’t dictate what sorts of normative considerations you
might face: since there are no a priori constraints on what local preferences
you might have, there are likewise no a priori constraints on the space of
global orderings.26 So an analysis that goes beyond Analysis 2 has to put
some boundaries in place.

The partition used in the proof of Theorem 4 is a way of enforcing
boundaries by, in effect, ranking local preferences. If b‖a ∈ pi and b′‖a′ ∈ pj

where j > i then b′ ‖a′ carries more weight than b ‖a does. You can see
this in κπ and therefore in the constructed ordering: it penalizes worlds for
flouting local preferences with more weight. Perhaps �b should quantify over
only the best worlds compatible with what you know in the linearizations of
such constrained rankings.27

Analysis 3. Let s = 〈k,p〉 be any state. And �π its induced ordering based
on the ordered partition π of p.

s
3
�b iff best≺(∩k) ⊆ b

for every linearization ≺ of �π .

This agrees with Analysis 2 as far as ought is concerned: whenever �b is true
in s according to Analysis 2 then it is true in s according to Analysis 3.

25 It also means that what might go for mushy credences can’t go for chunky preferences. That
is surprising since usually what goes for credence goes for preference and vice versa (you
know, Ramsey (1929/1990) and so forth).

26 This turns out to be enough to characterize the non-monotonic consequence relations built
on global preference orderings: the basic preferential logic (a.k.a. the basic unembedded
conditional logic) is complete with respect to such preferential models iff the space of
orderings is rich in this way (see Halpern 2003).

27 This amounts, in the current framework, to system z entailment (Pearl 1990), which in turn
is equivalent rational consequence relations (see Lehmann & Magidor 1992, Makinson 1994).
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Proposition 9. For any state s = 〈k,p〉 and b: if s
2
�b then s

3
�b.

Proof. Consider any s = 〈k,p〉 such that s
2
�b. So: best≺(∩k) ⊆ b for

every ≺ faithful to p. Consider any ≺′ that linearizes �π : ≺′ is faithful to p

(Theorem 4) and so best≺′(∩k) ⊆ b and hence s
3
�b.

This relationship is asymmetric when it comes to oughts (as opposed to
their negations). The place to see this is in a concrete example like (10).

Proposition 10. Let s = 〈k,p〉 where k = {a, c} and p = {b‖>,¬b‖a}.
Moreover, let s′ = 〈k,p′〉 where p′ = p∪ {b‖a∩ c}. Then:

i. s
3
�¬b; and

ii. s′
3
�b.

Proof. The ordered partition π of p is 〈p0,p1〉 where p0 = {b‖>} and p1 =
{¬b‖a}. Consider any v ∈ (a ∩ c) such that v ∈ b. We will see that any
w ∈ a∩ c such that w ∈ ¬b dominates it (with respect �π ). Since v ∈ a∩ b
it flouts ¬b ‖ a and hence κπ(v) = 2. Since w ∈ a ∩ ¬b it complies with
¬b‖a and flouts b‖> and hence κπ(w) = 1. So in every linearization ≺ of
�π : w ≺ v . And so best≺(a∩ c) ⊆ ¬b.

Similarly, the partition π ′ of p′ is 〈π,p2〉 where p2 = {b‖a∩ c}. Note that
if w ∈ (a∩c)∩¬b then κπ(w) = 3: w flouts b‖a∩c. And if v ∈ (a∩c)∩b
then κπ(v) = 2: v complies with b‖a∩ c and flouts ¬b‖a. Hence in every
linearization ≺ of �π ′ : v ≺ w and so best≺(a∩ c) ⊆ b.

Corollary 5. �b isn’t persistent in either p or k with respect to
3

.

Proof. Non-persistence in k: compare s = 〈k,p〉 and s′ = 〈k′,p〉 where k = �,
k′ = {a}, and p = {b‖>,¬b‖a}. Non-persistence in p: see Proposition
10.

This might seem like progress but, I think, the seeming is where it stops.
By the letter of the law, Analysis 3 fills in the template but in spirit we
have moved a long way from it. Even so, the analysis on offer for oughts is
both too strong and too weak. The takeaway is that the problem of linking
(expectation) ought to preference is hard.

The analysis is too strong in two ways. First: it has the wrong worldview.
Analysis 3 tiptoes on the border of embracing the same local-preferences-
determine-global-preferences stance that Analysis 1 takes. I can’t shake the
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feeling that this denies the phenomenon of chunky preferences in the first
place.

Second: Analysis 3 makes a priori judgments about what constraints carry
more weight. It does this by ignoring some global preference orderings that
are compatible with the local preferences being modeled. Among the ignored
orderings are those that are faithful to merely possible constraints. It does
this by minimizing the suboptimality represented.28 Thus the ranking it is
built on insists on a kind of normative equilibrium: no world in it can be
made any better and stay faithful to the local preferences. We have no right
to assume that.

More precisely: in the induced κπ , and so the orderings they determine,
every world occupies the best position it possibly can.

Definition 18 (Improvements). Let κ be any ranking function and w any
world. κ′ is a (solo) improvement over κ iff for some w:

i. κ′(w) < κ(w); and

ii. κ′(v) = κ(v) for every v 6= w.

Such improvements are a limit case of Pareto improving the situation in κ: κ′

makes exactly one world better without disturbing the ranking of any other
world.

Lemma. Let π = 〈p0, . . . ,pn〉 be the ordered partition of p. If b‖a ∈ pi then
κπ(a∩ b) = i.

Proof. Suppose otherwise: so (i) κπ(a∩ b) > i or (ii) κπ(a∩ b) < i. Suppose
(i): since b ‖ a ∈ pi there is a v ∈ (a ∩ b) such that κπ(v) = i, in which
case κπ(a ∩ b) 6> i. Suppose (ii): consider any w ∈ bestκπ (a ∩ b) and let
κπ(w) = j for some j < i. Since κπ(w) = j, w complies with every member
of pj. And since w ∈ (a∩ b), pj thus admits b‖a and hence it can’t be in pi.
Thus, since κπ(a∩ b) 6> i and κπ(a∩ b) 6< i, κπ(a∩ b) = i.

28 This basic idea is implemented in different ways in nonmonotonic logics. See, for example,
McCarthy 1980, Shoham 1987, Asher & Morreau 1991. If we are interested in modeling
common sense or default reasoning, you can (maybe) whip up some enthusiasm for the
idea: in that context it amounts to assuming that everything else (stuff not implicated by the
defaults you have) is as normal as possible in every respect. Theorem 6 was first proved in
Pearl 1990.
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Theorem 6. Let s = 〈k,p〉 be any state, π the ordered partition of p, and κπ
the associated ranking function. If κ is an improvement over κπ then κ is
not faithful to p.

Proof. Suppose κ is an improvement over κπ . So for some w: κπ(w) = i+ 1
and κ(w) < i + 1. Since κπ(w) = i + 1 there is a b ‖a ∈ pi such that w ∈
(a∩¬b). And since b‖a ∈ pi, it follows from the lemma that κπ(a∩ b) = i.
Finally, since w 6∈ bestκπ (a∩ b), we have that κ(a∩ b) 6<κ(a∩¬b) and so κ
isn’t faithful to p.

In terms of �π that κπ determines: modulo the local preferences, every world
is assumed to be as awesome as it can be. Alas the world as we know it does
not justify this cockeyed optimism. Would that it were different.

Analysis 3 is also too weak, again in two ways. First: because the way it
enforces priority for more specific local preferences is too rigid. In situations
like (8) it seems like more specific constraints (Better not to go to the pub
given it’s Sunday) should trump less specific ones (Better to go to the pub than
not). The ordered partition enforces this by prioritizing the more specific
constraint and so worlds that flout it are worse ceteris paribus than worlds
that comply with it. But as we saw in (9) it can happen that what is more
specific than what is wholly contingent, depending essentially on what you
know. Here is the example again:

(9) Better to go to the pub given Alex is going. b‖a
Better to not go to the pub given Chris is going. ¬b‖c
Chris goes. c
Either Chris doesn’t go or Alex goes. ¬c ∪ a
You ought not go to the pub. s �¬b

The underlying problem shows up in two ways. Both local preferences
get lumped together in the same (trivial) partition cell. This combines with
what you know to over-generate competition and conflict between the local
preferences. You can see this in the ordering �π generated by this ranking
(Figure 8): �π carves the possibilities by their rank, equivalence-class mates
are joined by dashed arrows, solid arrows are strict preferences between
equivalence classes. The worlds compatible with {¬c ∪ a, c} are w and y .
They are belong to the same equivalence class, but one is a b world and
one isn’t. Hence Analysis 3 doesn’t recognize this as a case of over-riding.
Officially:
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Figure 8 Contingent specificity: induced �π

Proposition 11. Let s = 〈k,p〉 where k = {c,¬c ∪ a} and p = {b‖a,¬b‖c}.
Then s 6

3
�¬b.

Proof. The set p admits both b‖a and ¬b‖c and so the ordered partition
is π = 〈p0〉 where p0 = p. Given this partition, κ−1π (0) = {t, s,u,x} and
κ−1π (1) =

{
v,y,w, z

}
. This gives the (pretty uninteresting) ordering in Figure

8. Since ∩k =
{
w,y

}
it follows that s 6

3
�¬b and s 6

3
�b.

The second way in which Analysis 3 is too weak: it adopts a contagion view
of over-riding local preferences, thereby under-generating obligations. This
happens when we have multiple local preferences with the same triggering
information and one of them is over-ridden.

An example, with a twist: you want to become mayor. This requires going
to the pub and it requires chatting up the locals. But on Sundays, it would be
a mistake to go to the pub.29

29 That you have (unconditional) local preferences for pub-going and locals-chatting simplifies
things by keeping the variables we have to track to a minimum. An example without this
simplification:

(12) It’s better to wear sunglasses, given a run. b‖a
It’s better to go early. c ‖ a
Except in January: it’s better to go later. ¬c ‖ a∩ d
You’re going out for a run in January. a∩ d
You ought to wear sunglasses. s �b
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Figure 9 Suboptimal subclass inheritance: induced �π

(13) It’s better to go to the pub. b‖>
It’s better to chat up the locals. c ‖ >
It’s better to not go to the pub, given it’s Sunday. ¬b ‖ a
It’s Sunday. a
You ought to not go to the pub. s �¬b

You ought to chat up the locals. s �c

The twist: as before, what counts as over-riding or more specific can be a
contingent thing. (The same is true for when two local preferences have the
same trigger; but you get the point.) Suppose, as a matter of brute fact, that
candidates only declare for the race on Sundays.

(14) It’s better to go to the pub, given that you’re campaigning. b‖d
It’s better to chat up the locals, given that you’re campaigning. c ‖ d
It’s better to not go to the pub, given it’s Sunday. ¬b ‖ a
Either it’s not Sunday or you are campaigning. ¬a∪ d
It’s Sunday. a
You ought to not go to the pub. s �¬b

You ought to chat up the locals. s �c

The difference between the example and the twist should be in the noise:
a good analysis should treat them the same. And in both cases: you ought
to chat up the locals and you ought to stay away from the pub. Analysis 3
treats the cases differently (not good) and doesn’t predict the right oughts
(really not good).
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Take (13) first. Neither of the unconditional local preferences b‖> and
c ‖> over-rides the other, and so they are cellmates in p0. But ¬b‖a over-
rides b‖>: this gets reflected by it occupying p1. A world in a∩¬b has to
flout b ‖>, but nothing guarantees that such a world can’t flout c ‖>, too.
Some do, but since these local preferences are cellmates, those worlds are
no worse than ones merely flouting b‖>. There are thus two sorts of best
a-worlds: those in ¬b ∩ c and those in ¬b ∩¬c. The suboptimality of b has
infected the goodness of c.

In terms of the induced ordering �π : t is the lone best-simpliciter world,
with

{
v,u,y,x, z

}
the rank 1 equivalence class, and {w, s} the rank 2 equiv-

alence class. (See Figure 9, where dashed arrows join equivalence class mates
and solid arrows are strict preferences between (members of) classes.) The
relevant thing: within a, the best worlds are u and y and while they are both
¬b-worlds, only one is a c-world.

Proposition 12. Let s = 〈k,p〉 where k = {a} and p = {b‖>, c‖>,¬b‖a}.
Then s

3
�¬b but s 6

3
�c.

Proof. The set p admits both b ‖ > and b ‖ > but not ¬b ‖ a and so the
ordered partition is π = 〈p0,p1〉 where p0 = {b‖>, c‖>} and p1 = {¬b‖a}.
Given this partition, κ−1π (0) = {t} and κ−1π (1) =

{
u,v,x,y, z

}
and κ−1π (2) =

{s,w}. This gives the (again, pretty uninteresting) ordering in Figure 9. Since

∩k =
{
s,u,w,y

}
it follows that s

3
�¬b and s 6

3
�c.

Analysis 3 doesn’t cope with contingent specificity: it lumps over-riding
local preferences together as competing preferences. Combine this with
independence between local preferences, as in (14), and the results are not
good. When what is more specific depends on what you know, Analysis 3
mistakenly lumps local preferences into the same partition cell. Focusing in
on just the worlds in d, this generates an almost completely trivial ordering:
one world is in κ−1π (0) and all others are in κ−1π (1). To see it graphically:
take Figure 9; this represents just the worlds in d; finally, change the strict
preference of x over w to the dashed double-arrow marking equivalence
classhood. Zooming in further to the a∩ d-worlds eliminates the sole world
in κ−1π (0), and leaves us with a completely heterogenous set of best worlds
and no clear verdicts about what you ought to do. Officially:

Proposition 13. Let s = 〈k,p〉where k = {a,¬a∪ d} and p = {b‖d, c‖d,¬b‖a}.
Then s 6

3
�b, s 6

3
�¬b, s 6

3
�c, and s 6

3
�¬c.
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Proof. The set p admits all of the local preferences and therefore the ordered
partition is π = 〈p0〉 where p0 = p. Given this partition, and taking the
restriction to d: κ−1π (0) = {t} and κ−1π (1) =

{
s,u,v,w,x,y, z

}
. By changing

the strict preference in Figure 9 between x and w to equivalence, the graph
models this ordering with d. Since ∩k =

{
s,u,w,y

}
it follows that none of

�b,�¬b,�c,�¬c are forced in s by
3

.

9 State of play

We began with a template, an observation, and a problem. The template
says that ought is tightly tied to a relation of what-is-better-than-what. The
observation is that normal predicaments under-determine such relations but
don’t seem to thereby under-determine the truth of oughts. Coping with
this is the problem. But we have a partial map of the terrain for would-be
solutions highlighting features that mark what can’t work and why. This is
progress.
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