The Logic Colloquium will feature Sandra Villata (UConn Departments of Linguistics and Psychological Science) on Friday, 11/13, at 11am (online).
Intermediate grammaticality
Formal theories of grammar and traditional sentence processing models start from the assumption that the grammar is a system of rules. In such a system, only binary outcomes are generated: a sentence is well-formed if it follows the rules of the grammar and ill-formed otherwise. This dichotomous grammatical system faces a critical challenge, namely accounting for the intermediate/gradient modulations observable in experimental measures (e.g., sentences receive gradient acceptability judgments, speakers report a gradient ability to comprehend sentences that deviate from idealized grammatical forms, and various online sentence processing measures yield gradient effects). This challenge is traditionally met by accounting for gradient effects in terms of extra-grammatical factors (e.g., working memory limitations, reanalysis, semantics), which intervene after the syntactic module generates its output. As a test case, in this talk I will focus on a specific kind of violation that is at the core of the linguistic investigation: islands, a family of encapsulated syntactic domains that seem to prohibit the establishment of syntactic dependencies inside of them (Ross 1967). Islands are interesting because, although most linguistic theories treat them as fully ungrammatical and uninterpretable, I will present experimental evidence revealing gradient patterns of acceptability and evidence that some island violations are interpretable. To account for these gradient data, in this talk I explore the consequences of assuming a more flexible rule-based system, where sentential elements can be coerced, under specific circumstances, to play a role that does not fully fit them. In this system, unlike traditional ones, structure formation is forced even under sub-optimal circumstances, which generates semi-grammatical structures in a continuous grammar.
Please contact Marcus Rossberg for log-in information.